
Boundary reflection matrix   for  ade affine Toda field theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 2163

(http://iopscience.iop.org/0305-4470/29/9/027)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 2163–2174. Printed in the UK

Boundary reflection matrix for ade affine Toda field theory

J D Kim†‡
Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, UK

Received 31 October 1995

Abstract. We present a complete set of conjectures for the exact boundary reflection matrix
for ade affine Toda field theory defined on a half line with the Neumann boundary condition.

1. Introduction

About a decade ago, studies on the integrable quantum field theory defined on a half line
(−∞ < x 6 0) were initiated using symmetry principles under the assumption that the
quantum integrability of the model remains intact [1]. The boundary Yang–Baxter equation,
unitarity relation for the boundary reflection matrixKb

a (θ) which was conceived to describe
the scattering process off a wall was introduced [1].

Recently, the boundary crossing unitarity relations [2] and the boundary bootstrap
equations [3] were introduced. Subsequently, a variety of solutions of the algebraic
equations for the affine Toda field theory have been constructed [2–6]. However, a proper
interpretation of these solutions in terms of the Lagrangian quantum field theory had been
unknown.

On the other hand, non-trivial boundary potentials which do not destroy the integrability
properties in the sense that there still exist an infinite number of conserved currents has been
determined [2, 6–10]. The stability problem of certain models with boundary potential has
also been discussed [6, 11].

Very recently, we have proposed a formalism [12] to compute a boundary reflection
matrix in the framework of the Lagrangian quantum field theory with a boundary [13–15].
The idea is to extract the boundary reflection matrix directly from the two-point correlation
function in the coordinate space. And it has revealed a number of striking features of the
perturbative quantum field theory defined on a half line.

Using this formalism, we determined the exact boundary reflection matrix for the sinh–
Gordon model (a(1)

1 affine Toda theory) and Bullough–Dodd model (a
(2)

2 affine Toda theory)
with the Neumann boundary condition [12]. If we assume the strong–weak coupling
‘duality’, these solutions are unique.

The above two models have a particle spectrum with only one mass. On the other
hand, when the theory has a particle spectrum with more than one mass, each one-loop
contribution from different types of Feynman diagrams has a variety of non-meromorphic
terms. We expect actual cancellation of these non-meromorphic terms ought to be essential
for a boundary reflection matrix to have a nice analytic property.
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Figure 1. Boundary reflection matrix.

In [16], we evaluated the one-loop boundary reflection matrix ford
(1)

4 affine Toda field
theory and showed a remarkable cancellation of non-meromorphic terms among themselves.
This result also enabled us to determine the exact boundary reflection matrix uniquely under
the assumption of the strong–weak coupling ‘duality’. It turned out that the boundary
reflection matrix has singularities which can be accounted for by a new type of singularities
of Feynman diagrams for a theory defined on a half line.

In this paper, we present a complete set of conjectures for the exact boundary reflection
matrix for ade affine Toda field theory defined on a half line with the Neumann boundary
condition. With this boundary condition, we expect the strong–weak coupling ‘duality’,
which is a symmetry of the model defined on a full line, to still be effective.

In section 2, we review the formalism developed in [12]. Particularly, we give a more
informative form of the formulae given in [12]. In section 3, we present a complete set of
conjectures for the exact boundary reflection matrix forade affine Toda field theory with the
Neumann boundary condition. Finally, we make conclusions in section 4. In an appendix,
we present the one-loop result as well as the complete set of solutions of the boundary
bootstrap equations fora(1)

3 theory.

2. Boundary reflection matrix

The action for affine Toda field theory defined on a half line (−∞ < x 6 0) is given by

S(8) =
∫ 0

−∞
dx

∫ ∞

−∞
dt

(
1

2
∂µφa∂µφa − m2

β2

r∑
i=0

ni eβαi ·8
)

(1)

where

α0 = −
r∑

i=1

niαi and n0 = 1 .

The fieldφa (a = 1, . . . , r) is theath component of the scalar field8 andαi (i = 1, . . . , r)
are simple roots of a Lie algebrag with rank r normalized so that the universal function
B(β) through which the dimensionless coupling constantβ appears in theS-matrix takes
the following form:

B(β) = 1

2π

β2

(1 + β2/4π)
. (2)

The m sets the mass scale and theni are the so-called Kac labels which are characteristic
integers defined for each Lie algebra. The quantityh = ∑r

0 ni is called the Coxeter number.
Here we consider the model with no boundary potential, which corresponds to the

Neumann boundary condition:∂φa

∂x
= 0 at x = 0. This case is believed to be quantum

stable in the sense that the existence of a boundary does not change the structure of the
quantum spectrum determined for the same theory defined on a full line.

In classical field theory, it is quite clear how we extract the boundary reflection matrix.
It is the coefficient of the reflection term in the classical two-point correlation function,
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namely it is 1:

GN(t ′, x ′; t, x) = G(t ′, x ′; t, x) + G(t ′, x ′; t, −x)

=
∫

d2p

(2π)2

i

p2 − m2
a + iε

e−iw(t ′−t)(eik(x ′−x) + eik(x ′+x)) . (3)

We may use thek-integrated version:

GN(t ′, x ′; t, x) =
∫

dw

2π

1

2k̄
e−iw(t ′−t)(eik̄|x ′−x| + e−ik̄(x ′+x)) k̄ =

√
w2 − m2

a . (4)

We find that the unintegrated version is very useful to extract the asymptotic part of the
two-point correlation function far away from the boundary.

In quantum field theory, it also seems quite natural to extend the above idea in order
to extract the quantum boundary reflection matrix directly from the quantum two-point
correlation function. This idea has been pursued in [12] to extract the one-loop boundary
reflection matrix.

To compute two-point correlation functions at one-loop order, we follow the idea of the
conventional perturbation theory [13–15]. That is, we generate relevant Feynman diagrams
and then evaluate each of them by using the zeroth-order two-point function for each line
occurring in the Feynman diagrams.

At one-loop order, there are three types of Feynman diagram contributing to the two-
point correlation function as depicted in figure 2.

Figure 2. Diagrams for the one-loop two-point function.

For a theory defined on a full line which has translational symmetry in space and time
directions, type I, II diagrams have a logarithmic infinity independent of the external energy–
momenta and are the only divergent diagrams in 1+ 1 dimensions. This infinity is usually
absorbed into the infinite-mass renormalization. Type III diagrams have finite corrections
depending on the external energy–momenta and produces a double pole to the two-point
correlation function.

The remedy for these double poles is to introduce a counterterm to the original
Lagrangian to cancel this term (or to renormalize the mass). In addition, to maintain
the residue of the pole, we have to introduce wavefunction renormalization. Then the
renormalized two-point correlation function remains the same as the tree level one with
renormalized massma, whose ratios are the same as the classical value. This mass
renormalization procedure can be generalized to arbitrary order of loops.

Now let us consider each diagram for a theory defined on a half line. Type I diagram
gives the following contribution:∫ 0

−∞
dx1

∫ ∞

−∞
dt1 GN(t, x; t1, x1) GN(t ′, x ′; t1, x1) GN(t1, x1; t1, x1) . (5)
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From type II diagram, we can read off the following expression:∫ 0

−∞
dx1 dx2

∫ ∞

−∞
dt1 dt2 GN(t, x; t1, x1) GN(t ′, x ′; t1, x1) GN(t1, x1; t2, x2) GN(t2, x2; t2, x2) .

(6)

Type III diagram gives the following contribution:∫ 0

−∞
dx1 dx2

∫ ∞

−∞
dt1 dt2 GN(t, x; t1, x1) GN(t ′, x ′; t2, x2) GN(t2, x2; t1, x1) GN(t2, x2; t1, x1) .

(7)

After the infinite as well as finite mass renormalization, the remaining terms coming
from type I, II and III diagrams can be written as follows with differentIi functions [12]:∫

dw

2π

dk

2π

dk′

2π
e−iw(t ′−t) ei(kx+k′x ′) i

w2 − k2 − m2
a + iε

i

w2 − k′2 − m2
a + iε

Ii(w, k, k′) . (8)

Contrary to the other terms which resemble those of a full line, this integral has two spatial
momentum integrations.

In the asymptotic region far away from the boundary, these terms can be evaluated up
to an exponentially damped term asx, x ′ go to −∞, yielding the following result for the
elastic boundary reflection matrixKa(θ) defined as the coefficient of the reflected term of
the two-point correlation function:∫

dw

2π
e−iw(t ′−t) 1

2k̄
(eik̄|x ′−x| + Ka(w) e−ik̄(x ′+x)) k̄ =

√
w2 − m2

a . (9)

Ka(θ) is obtained usingw = ma coshθ . Here we list each one-loop contribution toKa(θ)

from the three types of diagram depicted in figure 2 [12]:

K(I)
a (θ) = 1

4ma sinhθ

(
1

2
√

m2
a sinh2 θ + m2

b

+ 1

2mb

)
C1 S1 (10)

K(II)
a (θ) = 1

4ma sinhθ

( −i

(4m2
a sinh2 θ + m2

b)2
√

m2
a sinh2 θ + m2

c

+ −i

2m2
bmc

)
C2 S2 (11)

K(III )
a (θ) = 1

4ma sinhθ
(4I3(k1 = 0, k2 = k̄) + 4I3(k1 = k̄, k2 = 0)) C3 S3 . (12)

We remark that the extra factor half which was reported as missing in [12] is found to arise
from the delta function integral(s) of the spatial loop momentum(a). That is,

∫
dk δ(2k) = 1

2
instead of 1.

Ci, Si denote numerical coupling factors and symmetry factors, respectively.I3 is
defined by

I3 ≡ 1

4

(
i

2w̄1(w̄1 − w̃+
1 )(w̄1 − w̃−

1 )
+ i

(w̃+
1 − w̄1)(w̃

+
1 + w̄1)(w̃

+
1 − w̃−

1 )

)
(13)

where

w̄1 =
√

k2
1 + m2

b w̃+
1 = w +

√
k2

2 + m2
c w̃−

1 = w −
√

k2
2 + m2

c . (14)

It should be remarked that this term should be symmetrized with respect tomb, mc with a
half.
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The expression for a contribution from a type III diagram can be rewritten in the
following form:

K(III )
a = i

4ma sinhθ
C3 S3

(
cosθc

ab

4mam
2
b(cosh2 θ − cos2 θc

ab)

− ma cosh2 θ + mb cosθc
ab

2mam
2
b2

√
m2

a sinh2 θ+m2
c(cosh2 θ−cos2 θc

ab)
+ cosθb

ac

4mam2
c(cosh2 θ−cos2 θb

ac)

− ma cosh2 θ + mc cosθb
ac

2mam2
c2

√
m2

a sinh2 θ + m2
b(cosh2 θ − cos2 θb

ac)

)
(15)

whereθc
ab is a usual fusion angle defined by

cosθc
ab = m2

c − m2
a − m2

b

2mamb

. (16)

Let us note a few interesting points. Firstly, all the expressions in (10)–(12) have, in
general, non-meromorphic terms when the theory has a mass spectrum with more than one
mass. Cancellation of these terms is expected to occur for the boundary reflection matrix to
have a nice analytic property. We have verified this non-trivial cancellation ford

(1)

4 theory
in [16] and the result fora(1)

3 theory is presented in the appendix. Secondly, the Feynman
diagrams have (simple pole) singularities which are absent for the theory defined on a full
line. A general study on the analytic property of the boundary reflection matrix is definitely
needed, while that for the scattering matrix has been done extensively [17].

Moreover, the position of poles are directly related with fusion angles as in (15) and
less obviously as in (11). Later in the appendix, we will see a non-trivial cancellation
of non-meromorphic terms and the fact that the new type of singularity accounts for the
singularities of the exact boundary reflection matrix.

3. The boundary reflection matrix for ade affine Toda theory

The exactS-matrix for integrable quantum field theory defined on a full line has been
conjectured using the symmetry principles such as the Yang–Baxter equation, unitarity,
crossing relation, real analyticity and bootstrap equation [18–22]. This program relies
entirely on the assumed quantum integrability of the model as well as the fundamental
assumptions such as strong–weak coupling ‘duality’ and ‘minimality’.

In order to determine the exactS-matrix uniquely, Feynman’s perturbation theory has
been used [23–27] and shown to agree well with the conjectured ‘minimal’S-matrices.
In perturbation theory, theS-matrix is extracted from the four-point correlation function
with the LSZ reduction formalism. The singularity structures were examined in terms of
the Landau singularity [17], of which odd order poles are interpreted as coming from the
intermediate bound states.

In determining the whole set of scattering matrix elements, it is essentially sufficient to
determine the element for the so-called ‘elementary particle’. Starting from that element,
we can determine all the other elements using the bootstrap equations [20]. This is also true
for the boundary reflection matrix. Ina(1)

n theory, the ‘elementary particle’ is the lightest
one corresponding to two end points of the Dynkin diagram. Ind(1)

n theory, ‘elementary
particles’ are those corresponding to (anti-)spinor representations. Ine

(1)

6 theory, ‘elementary
particles’ are the lightest ones which are conjugate to each other corresponding to two end
points of the Dynkin diagram. Ine(1)

7 ande
(1)

8 theories, it is the lightest one corresponding
to the end point of the longer arm of the Dynkin diagram.



2168 J D Kim

Figure 3. Dynkin diagram foran.

Let us start froma(1)
n (n > 1) theory. The boundary reflection matrix for the ‘elementary

particles’ can be coded into the following pyramid of exponents of the factors [x] which
appear in the boundary reflection matrix.

Figure 4. A pyramid of exponents foran theory.

It means that

K1(θ) = Kn(θ) =
2h−3∏

k=1,step 2

[k/2] (17)

where

[x] = (x − 1/2)(x + 1/2)

(x − 1/2 + B/2)(x + 1/2 − B/2)
(x) = sinh(θ/2 + iπx/2h)

sinh(θ/2 − iπx/2h)
. (18)

From these elements of the boundary reflection matrix, we can, in principle, determine all
the other elements using the boundary bootstrap equations.

Figure 5. Dynkin diagram fordn.

For d(1)
n (n > 2) theory, a pyramid of exponents takes a slightly complicated form.d

(1)

2
theory is equal to two copies of sinh–Gordon theory which isa

(1)

1 theory andd(1)

3 theory is
equal toa

(1)

3 theory.

Figure 6. The first pyramid of exponents fordn theory.

It means that

Ks(θ) = Ks ′(s̄)(θ) =
2h−3∏

k=1,step 2

[k/2]xk (19)

wherexk are the exponents in sequence from (to) left to (from) right in figure 6. The rule
of figure 6 is the following. At odd rows except the apex, prepare two copies of the middle
number and put them on two sites neighbouring the centre, pushing the others away towards
both sides and increment the original middle number by one unit. At even rows, do the
same thing as for odd rows but leave the middle number without incrementing it. From
these elements of the boundary reflection matrix, we can determine all the other elements.

On the other hand, a pyramid of exponents for the lightest particle corresponding to the
end point of the longer arm of the Dynkin diagram take the following form.
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Figure 7. The second pyramid of exponents fordn theory.

It means that

Kn−2(θ) =
2h−3∏

k=1,step 2

[k/2]xk (20)

wherexk are the exponents in figure 7. The rule of the figure 7 is that only the middle
number is two except the apex. From these data, we cannot determine all the other elements
for eachd(1)

n theory. However, it obviously looks simpler than the elements corresponding
to (anti-)spinor representations.

Figure 8. Dynkin diagram fore6.

For e(1)
n theory, we have checked the conjectured boundary reflection matrices of the

‘elementary particles’ by perturbation theory. Other elements for particles which are not
‘elementary’ are determined using the boundary bootstrap equations.

For e
(1)

6 theory(h = 12), a complete list is

K1(θ) = [1/2][3/2][5/2][7/2]2[9/2]2[11/2]2[13/2]2[15/2]2[17/2][19/2][21/2]

K2(θ) = [1/2][3/2][5/2]2[7/2]3[9/2]3[11/2]3[13/2]2[15/2]3[17/2]2[19/2][21/2]

K3(θ) = [1/2][3/2]2[5/2]3[7/2]4[9/2]4[11/2]4[13/2]4[15/2]3[17/2]2[19/2]2[21/2]

K4(θ) = [1/2][3/2]3[5/2]5[7/2]6[9/2]6[11/2]6[13/2]5[15/2]4[17/2]3[19/2]2[21/2]

K5(θ) = K3(θ)

K6(θ) = K1(θ) .

(21)

Figure 9. Dynkin diagram fore7.

For e
(1)
7 theory(h = 18), a complete list is

K1(θ) = [1/2][3/2][5/2][7/2][9/2]2[11/2]2[13/2]2[15/2]2[17/2]3[19/2]2

×[21/2]2[23/2]2[25/2]2[27/2][29/2][31/2][33/2]

K2(θ) = [1/2][3/2][5/2][7/2]2[9/2]2[11/2]3[13/2]3[15/2]3[17/2]3[19/2]2

×[21/2]3[23/2]3[25/2]2[27/2]2[29/2][31/2][33/2]

K3(θ) = [1/2][3/2][5/2]2[7/2]3[9/2]4[11/2]4[13/2]4[15/2]4[17/2]5[19/2]4

×[21/2]4[23/2]3[25/2]3[27/2]3[29/2]2[31/2][33/2]

K4(θ) = [1/2][3/2]2[5/2]2[7/2]3[9/2]4[11/2]4[13/2]4[15/2]5[17/2]5[19/2]4

×[21/2]4[23/2]4[25/2]3[27/2]2[29/2]2[31/2]2[33/2]
(22)
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K5(θ) = [1/2][3/2]2[5/2]3[7/2]4[9/2]5[11/2]6[13/2]6[15/2]6[17/2]6[19/2]5

×[21/2]5[23/2]5[25/2]4[27/2]3[29/2]2[31/2]2[33/2]

K6(θ) = [1/2][3/2]2[5/2]4[7/2]5[9/2]6[11/2]6[13/2]7[15/2]7[17/2]7[19/2]6

×[21/2]6[23/2]5[25/2]4[27/2]3[29/2]3[31/2]2[33/2]

K7(θ) = [1/2][3/2]3[5/2]5[7/2]7[9/2]8[11/2]9[13/2]9[15/2]9[17/2]9[19/2]8

×[21/2]7[23/2]6[25/2]5[27/2]4[29/2]3[31/2]2[33/2] .

Figure 10. Dynkin diagram fore8.

For e
(1)

8 theory(h = 30), a complete list is

K1 = [1/2][3/2][5/2][7/2][9/2][11/2]2[13/2]2[15/2]2[17/2]2[19/2]3[21/2]3

×[23/2]3[25/2]3[27/2]3[29/2]3[31/2]2[33/2]3[35/2]3[37/2]3[39/2]3

×[41/2]2[43/2]2[45/2]2[47/2]2[49/2][51/2][53/2][55/2][57/2]

K2 = [1/2][3/2][5/2][7/2]2[9/2]2[11/2]3[13/2]4[15/2]4[17/2]4[19/2]4[21/2]4

×[23/2]5[25/2]5[27/2]5[29/2]5[31/2]4[33/2]5[35/2]5[37/2]4[39/2]4

×[41/2]3[43/2]3[45/2]4[47/2]3[49/2]2[51/2]2[53/2][55/2][57/2]

K3 = [1/2][3/2]2[5/2]2[7/2]2[9/2]3[11/2]4[13/2]4[15/2]4[17/2]5[19/2]6[21/2]6

×[23/2]6[25/2]6[27/2]6[29/2]6[31/2]5[33/2]5[35/2]6[37/2]6[39/2]5

×[41/2]4[43/2]4[45/2]4[47/2]3[49/2]2[51/2]2[53/2]2[55/2]2[57/2]

K4 = [1/2][3/2][5/2]2[7/2]3[9/2]4[11/2]5[13/2]5[15/2]6[17/2]6[19/2]7[21/2]7

×[23/2]7[25/2]7[27/2]7[29/2]8[31/2]7[33/2]7[35/2]6[37/2]6[39/2]6

×[41/2]5[43/2]5[45/2]4[47/2]4[49/2]3[51/2]3[53/2]2[55/2][57/2]

K5 = [1/2][3/2]2[5/2]3[7/2]4[9/2]5[11/2]6[13/2]6[15/2]7[17/2]8[19/2]9[21/2]9 (23)

×[23/2]9[25/2]9[27/2]9[29/2]9[31/2]8[33/2]8[35/2]8[37/2]8[39/2]7

×[41/2]6[43/2]6[45/2]5[47/2]4[49/2]3[51/2]3[53/2]3[55/2]2[57/2]

K6 = [1/2][3/2]2[5/2]3[7/2]4[9/2]5[11/2]7[13/2]8[15/2]8[17/2]9[19/2]9[21/2]9

×[23/2]10[25/2]10[27/2]10[29/2]10[31/2]9[33/2]9[35/2]9[37/2]8[39/2]7

×[41/2]6[43/2]6[45/2]6[47/2]5[49/2]4[51/2]3[53/2]2[55/2]2[57/2]

K7 = [1/2][3/2]2[5/2]4[7/2]6[9/2]7[11/2]8[13/2]9[15/2]10[17/2]11[19/2]12[21/2]12

×[23/2]12[25/2]12[27/2]12[29/2]12[31/2]11[33/2]11[35/2]10[37/2]9

×[39/2]9[41/2]8[43/2]7[45/2]6[47/2]5[49/2]4[51/2]4

×[53/2]3[55/2]2[57/2]

K8 = [1/2][3/2]3[5/2]5[7/2]7[9/2]9[11/2]11[13/2]12[15/2]13[17/2]14[19/2]15[21/2]15

×[23/2]15[25/2]15[27/2]15[29/2]15[31/2]14[33/2]13[35/2]12[37/2]11

×[39/2]10[41/2]9[43/2]8[45/2]7[47/2]6[49/2]5[51/2]4[53/2]3

×[55/2]2[57/2] .

We remark that we have extensive direct proofs for these conjectures by perturbation
theory which are basically case-by-case works. Parts of them have already been presented
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in [12, 16] and are presented in the appendix of this paper. These conjectured boundary
reflection matrices are also tested against various algebraic requirements such as the
boundary crossing unitarity relations and always give consistent results.

4. Conclusions

In this paper, we presented a complete set of conjectures for the exact boundary reflection
matrix for ade affine Toda field theory defined on a half line with Neumann boundary
condition. These conjectures are based on extensive direct proofs by perturbation theory
and are tested against various algebraic requirements such as the boundary crossing unitarity
relations and the boundary bootstrap equations.

Surprisingly enough, these solutions have very rich pole structures in a physical strip
(0 6 Im(θ) < π). However, structures of these singularities are explainable in terms of
Feynman diagrams in figure 2 which definitely have no singularity for the theory defined
on a full line and their positions of poles which are produced by the Feynman diagrams are
related with fusing angles for affine Toda field theory as in (15).

In the appendix, we presented a detailed computation fora
(1)

3 affine Toda field theory
up to one-loop order in order to demonstrate a remarkable cancellation of non-meromorphic
terms which are always present for each diagram when the model has a particle spectrum
with more than one mass. Using this result, we also determined the exact boundary reflection
matrix under the assumption of the strong–weak coupling ‘duality’, which turned out to be
‘non-minimal’. We also presented the complete set of solutions of the boundary bootstrap
equations.
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Appendix A. a(1)

3 affine Toda theory

We have to fix the normalization of roots so that the standardB(β) function takes the form
in (2).

We use the Lagrangian density given by

V (8) = 2m2φ1φ
∗
1 + 2m2φ2φ2 + im2βφ1φ1φ2 − im2βφ2φ

∗
1φ∗

1

− 1
24m

2β2φ1φ1φ1φ1 + 1
4m2β2φ1φ1φ

∗
1φ∗

1 + m2β2φ1φ
∗
1φ2φ2

+ 1
6m2β2φ2φ2φ2φ2 − 1

24m
2β2φ∗

1φ∗
1φ∗

1φ∗
1 + O(β3) . (A1)

The scattering matrix of this model is given by [19]

S11(θ) = S33(θ) = {1} S12(θ) = {2} S22(θ) = {1}{3}
{x} = (x − 1)(x + 1)

(x − 1 + B)(x + 1 − B)
.

(A2)

HereB is the same function defined in (2). For this model,h = 4 and from now on we set
m = 1.
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First we consider the light particle corresponding toφ1 or its conjugate. It is understood
that a suitable choice between a conjugate pair has to be made depending on a chosen
direction of time flow. There are two possible configurations for a type I diagram. One is
b = φ1 or its conjugate and the other isb = φ2 in the notation of figure 2. Theφ1 loop
contribution is the following:

K1(θ)(I−1) = 1

4
√

2 sinhθ

(
1

2
√

2 coshθ
+ 1

2
√

2

)
×

(−i

4
β2

)
× 4 . (A3)

The φ2 loop contribution is the following:

K1(θ)(I−2) = 1

4
√

2 sinhθ

(
1

2
√

2 sinh2 θ + 4
+ 1

4

)
× (−iβ2) × 1 . (A4)

There are no configurations for the type II diagram for thea
(1)

3 model. In fact, this is
the case for anya(1)

n theory.
For a type III diagram, there exists only one configuration withb = φ1, c = φ2

symmetrized. Forb = φ1, c = φ2, whenk1 = 0, k2 = k,

w̄1 =
√

2 w̃+
1 =

√
2 coshθ +

√
2 sinh2 θ + 4 w̃−

1 =
√

2 coshθ −
√

2 sinh2 θ + 4

(A5)

and whenk1 = k, k2 = 0,

w̄1 =
√

2 sinh2 θ + 2 w̃+
1 =

√
2 coshθ + 2 w̃−

1 =
√

2 coshθ − 2 . (A6)

For b = φ2, c = φ1, whenk1 = 0, k2 = k,

w̄1 = 2 w̃+
1 =

√
2 coshθ +

√
2 sinh2 θ + 2 w̃−

1 =
√

2 coshθ −
√

2 sinh2 θ + 2

(A7)

and whenk1 = k, k2 = 0,

w̄1 =
√

2 sinh2 θ + 4 w̃+
1 =

√
2 coshθ +

√
2 w̃−

1 =
√

2 coshθ −
√

2 . (A8)

The result for type III diagram can be obtained by inserting above data into equation (12):

K1(θ)(III ) = 1

4
√

2 sinhθ

(
− i

8
√

2 coshθ
− i

8
√

2
√

sinh2 θ + 2
+ i

16(
√

2 coshθ + 1)

)
×(−β2) × 4 . (A9)

Adding the above contributions as well as the classical value 1, the boundary reflection
matrix for the light particle is given by

K1(θ) = 1 + iβ2

16

(
sinhθ

coshθ + 1/
√

2
− sinhθ

coshθ − 1

)
+ O(β4) . (A10)

The unwanted non-meromorphic terms exactly cancel out.
Now we consider the heavy particle corresponding toφ2 which are self-conjugate. There

are two possible configurations for a type I diagram. One isb = φ1, the other isb = φ2 in
the notation of figure 2. Theφ2 loop contribution is the following:

K2(θ)(I−1) = 1

8 sinhθ

(
1

4 coshθ
+ 1

4

)
×

(−i

6
β2

)
× 12. (A11)

The φ1 loop contribution is the following:

K2(θ)(I−2) = 1

8 sinhθ

(
1

2
√

4 sinh2 θ + 2
+ 1

2
√

2

)
× (−iβ2) × 2 . (A12)
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There is no type II diagram for the heavy particle, either.
For a type III diagram, there is a single configuration withb = φ1, c = φ1. When

k1 = 0, k2 = k,

w̄1 =
√

2 w̃+
1 = 2 coshθ +

√
4 sinh2 θ + 2 w̃−

1 = 2 coshθ −
√

4 sinh2 θ + 2

(A13)

and whenk1 = k, k2 = 0,

w̄1 =
√

4 sinh2 θ + 2 w̃+
1 = 2 coshθ +

√
2 w̃−

1 = 2 coshθ −
√

2 . (A14)

The result for a type III diagram can be obtained by inserting the above data into
equation (12):

K2(θ)(III ) = 1

8 sinhθ

( −i

8
√

2(
√

2 coshθ − 1)
+ i

8
√

2(
√

2 coshθ + 1)
− i

4
√

2
√

2 sinh2 θ + 1

)
×(−β2) × 4 . (A15)

Adding the above contributions as well as the classical value 1, the boundary reflection
matrix for the heavy particle is given by

K2(θ) = 1 + iβ2

16

(
sinhθ

coshθ
− sinhθ

coshθ − 1
− sinhθ

coshθ − 1/
√

2
+ sinhθ

coshθ + 1/
√

2

)
+ O(β4) .

(A16)

The unwanted non-meromorphic terms exactly cancel out once again.
On the other hand, there are two ‘minimal’ boundary reflection matrices known for the

a
(1)

3 model [3, 5]. None of these agrees with the perturbative result.
We have checked by perturbation theory that this boundary reflection matrix, at one-loop

order, satisfies the boundary crossing unitarity relations as well as the boundary bootstrap
equations:

K1(θ) K1(θ − iπ) = S11(2θ) K2(θ) K2(θ − iπ) = S22(2θ)

K2(θ) = K1(θ + iπ/4) K1(θ − iπ/4) S11(2θ)

K1(θ) = K3(θ) .

(A17)

In one-loop checks, the following identity is useful:

(x + B/2)

(x)
= 1 + iπB

2h

sinhθ

coshθ − cos(xπ/h)
+ O(B2) . (A18)

The exact boundary reflection matrix is determined uniquely if we assume the strong–weak
coupling ‘duality’:

K1(θ) = [1/2][3/2][5/2] K2(θ) = [1/2][3/2]2[5/2] . (A19)

On the other hand, the most general solution can be written in the following form under
the assumption of the strong–weak coupling ‘duality’:

K1(θ) = [1/2]a1[3/2]b1[5/2]c1[7/2]d1

K2(θ) = [1/2]a2[3/2]b2[5/2]c2[7/2]d2 .
(A20)

Inserting the above into the boundary bootstrap equations, we can obtain linear algebraic
relations among the exponents. Solving this system of equations yields

a1 = free b1 = free c1 = b1 d1 = a1 − 1

a2 = −a1 + b1 + 1 b2 = a1 + b1 c2 = a1 + b1 − 1 d2 = −a1 + b1 .
(A21)
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